Muscles, appendages, and locomotion
- Related Topics:
- crustacean
- trilobite
- myriapod
- pentastomid
- Chelicerata
- On the Web:
- Arizona-Sonora Desert Museum - A Vertebrate Looks at Arthropods (Dec. 16, 2024)
Arthropods are unusual among invertebrates; they lack locomotory cilia, even as larvae. The problem that a rigid external covering imposes on movement has been solved by having the exoskeleton divided into plates over the body and through a series of cylinders around the appendages. At the junction, or joints, between the plates and cylinders the exoskeleton is thin and flexible because it lacks the exocuticle and because it is folded. The folds provide additional surface area as the joints are bent. The arthropod’s exoskeleton is therefore somewhat analogous to the armour encasing a medieval knight.
Most arthropods move by means of their segmental appendages, and the exoskeleton and the muscles, which attach to the inside of the skeleton, act together as a lever system, as is also true in vertebrates. The external skeleton of arthropods is a highly efficient system for small animals. The exoskeleton provides a large surface area for the attachment of muscles and, in addition to functioning in support and movement, also provides protection from the external environment. The cylindrical design resists bending, and only a relatively small amount of skeletal material need be invested in thickness to prevent buckling. The external skeleton imposes limits on the maximum size of an arthropod, especially in those that live on land. The largest arthropods live in the sea, where they gain considerable support from the buoyance of seawater. On land, an excessive amount of skeleton would be required to support a large bulk and, in addition, the new soft skeleton might collapse following a molt.
Appendages of arthropods have been adapted for all types of locomotion—walking, pushing, running, swimming, and burrowing. In most arthropods the legs move alternately on the two sides of the body; i.e., when one leg is in a power stroke, its mate on the opposite side of the body is in the recovery stroke (the same is true of mammals when walking). The legs in front or back are a little ahead or behind in the movement sequence. Because of the lateral position of the legs, the body of an arthropod tends to hang between them. Leg interference and trunk wobble tend to be problems in an animal with a long trunk and many legs, such as a millipede or a centipede. Most arthropods have evolved more-compact bodies and a smaller number of legs. The number of pairs of legs used in walking is not more than seven in pill bugs (terrestrial crustaceans), four or five in shrimps and crabs, four in arachnids, and three in insects. This reduces the problem of mechanical interference. When a ghost crab, for example, is running rapidly across a beach or dune, only the second, third, and fourth pairs of the five pairs of legs (counting the claws) are employed. Leg interference is further reduced in most arthropods by varying limb length and placement. For example, in Scutigera, the centipede commonly seen in houses, the legs increase in length from front to back and thus pass over or under one another in stepping. The tendency for the trunk to wobble has been reduced in some centipedes by having overlapping dorsal plates and in millipedes by having pairs of segments fused to form double segments. Many arthropods are capable of walking on vertical surfaces. Some simply grip minute surface irregularities with the claws at the end of the legs. Others, such as certain spiders and flies, have an array of specialized gripping hairs at the ends of the legs.
Insect wings are not segmental appendages as are the legs. The paired wings arise as lateral folds of the integument, one pair above each of the last two pairs of legs. Each wing thus consists of an upper and lower sheet of exoskeleton closely applied to each other. The two skeletal sheets are separated at various places, forming tubular supporting veins. Unlike the wings of an airplane, the wings of insects are flat plates, and lift is obtained by changing the angle at which the front margin of the wing meets the oncoming air stream. The evolution of flight is one of several adaptations that have enabled insects to become the most diverse and populous group of terrestrial animals.
A burrowing habit has evolved in some insects, such as mole crickets and ants, but the largest burrowers are crustaceans. Mole crabs and box crabs are rapid burrowers in soft marine sands, and various species of mantis shrimps, mud shrimps, and snapping shrimps create elaborate burrows below the bottom surface. Crustaceans also include the largest number of arthropod tube dwellers, surpassed only by certain marine worms (polychaetes). Most of the tube-dwelling crustaceans are amphipods. Their tubes are usually composed of sand or mud particles secreted together and attached to bottom objects; there are, however, some amphipods that carry their tubes with them like a portable house.