Areas of distribution
- Related Topics:
- oreodont
- ruminant
- tylopod
- Archaeomeryx
- Suiformes
- On the Web:
- University of Valencia - The Evolution of the Artiodactyls (PDF) (Jan. 06, 2025)
Some artiodactyls have surprisingly small ranges; Hunter’s hartebeest (Beatragus hunteri) and the dibatag (Ammodorcas clarkei), for example, are found in two very restricted areas in eastern Africa. Others have extremely large ranges, such as the roe deer, which lives from the western shores of Europe to the eastern shores of Asia, or the red deer, which is found in a similar band across Eurasia and is regarded by many as conspecific with the North American wapiti or elk (otherwise called Cervus canadensis). Sometimes a considerable area may be occupied by a chain of related species, an example being the oryxes; the beisa and gemsbok (races of Oryx gazella) occur in South and East Africa, the scimitar-horned oryx (O. dammah) in West Africa, and the Arabian oryx (O. leucoryx) in Arabia.
It is well known that climate is one of the factors limiting the ranges of artiodactyls. A number of South African antelopes differ, at the species level, from their ecological counterparts farther north in Africa. The bontebok and blesbok, races of Damaliscus dorcas, are found in the south and the sassaby (D. lunatus) farther north; the black wildebeest (Connochaetes gnou) occurs in the south and the blue wildebeest (C. taurinus) farther north. This probably is a result of climatic or climatically influenced factors; each species evidently functions best in a certain temperature and aridity range. Wide distributions can occur more easily along lines of latitude than they can by spanning the tropics to temperate or polar regions. Species that cross lines of latitude are often associated with mountain chains, examples being the Rocky Mountain goat, with its wide latitudinal range in western North America, and the goral (Nemorhaedus goral), found from Indochina to the Amur River. Climatic effects on distributions sometimes occur with regard to altitude. In Central Asia, the goa (Gazella picticaudata) is found in valleys from 3,000 to 3,660 metres (10,000 to 12,000 feet) above sea level, the chiru (Pantholops hodgsoni) and the yak (Bos mutus) are on the very high steppe between 5,500 and 6,100 metres (18,000 and 20,000 feet).
South America has a more impoverished artiodactyl fauna than Africa, being limited to deer and camelids. This arises in part from the late arrival of the artiodactyls (deer in early to middle Pliocene, about four million years ago, camelids perhaps a little later) and in part because a number of large rodents compensate for the shortage of large herbivores. The cervids in South America have not shown the same capacity for radiation in open country as have bovids in the Old World.
The areas of distribution and numbers of individuals are determined by complicated interweaving of effects not yet completely understood. Bloodsucking flies are thought to be the main reason that red deer in Scotland ascend to higher feeding grounds in June, and reindeer are afflicted by horse flies (Tabanus) and other dipteran pests. It is questionable whether the level of artiodactyl populations is controlled by predation, by availability of food, by reproductive rate, by disease, by climate, or by competition, insofar as these can be regarded as separate factors. It is known that undernourishment increases the susceptibility of an animal to the effects of parasites. If such an infected animal, say a pig, is caught by a leopard, it would be an oversimplification to assign a single reason for its death; it could have died from starvation, parasites, or predation. There is no evidence that artiodactyls are affected more than marginally by predators during most of their mature lives. Mortality is greatest among juvenile and aged animals. In a study of central African warthogs, it was estimated that a 60 percent loss occurred during the first six months of life in an expanding population and 95 percent in a declining one. Although predation was thought to be the main cause, another was the fact that the piglets had only limited control over their body temperatures and were thus more at the mercy of environmental temperature change. Food supply may sometimes be decisive, either directly or through the indirect action of intermediate agencies such as drought. The year 1961 lacked long rains, causing a severe shortage of forage in the Nairobi Game Park in Kenya. Many antelopes died of starvation, populations fell, and those of the blue wildebeest had not recovered nine years later, perhaps for reasons unconnected with the initial drought. Disease has generally been considered to have only a secondary importance in regulating numbers.
Thickness of the snow cover in winter is a very important factor for Asian artiodactyls. The saiga, for example, cannot move in snow deeper than about 40 cm (16 inches), and the wild sheep Ovis ammon in snow deeper than 60 cm (24 inches), at the most. The snow may have other effects; a layer of ice on top of snow may damage an animal’s legs and weaken the animal to the extent that it is caught by a predator. Saiga may be unable to dig through even a shallow layer of compacted snow. Hoarfrost on vegetation is especially dangerous when prolonged or when it occurs in consecutive winters, though elk may escape the worst effects by feeding in winter on bark and high shoots. Massive periodic mortalities among Palearctic (Eurasian) ungulates in winter have been known since ancient times. The saiga has adapted to these crises by migrating great distances in a short time away from snowstorms or from areas where fodder is short. It also has a very rapid maturation to a reproductive state, ensuring that populations will build up after heavy mortalities.
Population density over the range of a species is affected by social behaviour, such as the effects of territoriality, dispersal of the young, and whether the species lives in herds. Fecundity may be reduced in overcrowded conditions by effects on reproductive control mechanisms, reduced viability of the young, or retarded maturation.