print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Key People:
Adam Sedgwick
On the Web:
CORE - The Cambrian Period (Jan. 11, 2025)

Cambrian faunas, like those of the present day, are commonly dominated in numbers and kind by members of the phylum Arthropoda. Calcification of skeletons by the beginning of Atdabanian time contributed to an abundant fossil record of the class Trilobita, of which some details have been discussed above. Many hundreds of genera and thousands of species of Cambrian trilobites have been described worldwide. Rates of evolution in Cambrian trilobites were relatively rapid, resulting in short stratigraphic ranges and giving them much value for biostratigraphic correlation. Representatives of the class Ostracoda, characteristically enclosed by a bivalved carapace, also appeared near the base of the Atdabanian. Compared with trilobites, however, ostracods are generally rare and of low diversity throughout the Cambrian, except in some rocks of Australia and China. Extraordinary preservation at rare localities indicates that many other kinds of arthropods were at least locally more abundant and more diverse than the trilobites. These other arthropods had unmineralized skeletons, and some may represent extinct classes.

Sponges (phylum Porifera) are commonly represented in Cambrian faunas. Archaeocyathan sponges, characterized by cup-shaped skeletons with double calcareous walls and numerous pores, are abundant and diverse in some early Cambrian deposits. They have been used for provincial biostratigraphic zonation, especially in Australia and Siberia. Archaeocyathans are common only in regions that were positioned in low latitudes during the Cambrian—Antarctica, Australia, China, Kazakhstan, Siberia, and North America. Their latitudinal distribution is similar to that of modern colonial corals, suggesting adaptations to similar ecological controls in warm shallow seas. Archaeocyathans nearly disappeared about the middle of the Cambrian, but rare species survived until much later in the period, after which the group became extinct. Other common Cambrian sponges had skeletons of siliceous (silica-derived) spicules, which readily disaggregated after death, making their identification at lower taxonomic levels difficult, if not impossible. At rare locations of exceptional preservation, where articulated skeletons and associated soft-bodied taxa and others were found, spicular sponges are second only to arthropods in species diversity. This suggests that Cambrian sponges were much more common and more diverse than is indicated by the known fossil record. Limited information indicates that species of spicular sponges evolved slowly during the Cambrian, resulting in relatively long ranges within the stratigraphic record.

Brachiopod shells are present in many Cambrian continental-shelf deposits. In terms of the total number of species that have been described from Cambrian rocks, brachiopods are second only to trilobites. Species diversity, however, is generally low to moderate at most localities. Phosphatic shells of the class Inarticulata are normally much more common and more diverse than are calcareous shells of the class Articulata. These abundance and diversity relationships are usually reversed in post-Cambrian rocks.

The phylum Echinodermata (some present-day representatives of which are sea urchins and starfish) had a major adaptive radiation during the Cambrian Period. The number of classes increased from three early in the Cambrian to eight toward the middle of the period. Only one of these, the Eocrinoidea, is known from many species, but the described record seems to be grossly incomplete. Skeletal plates in early echinoderms were not rigidly connected, and they readily disaggregated after the death of an animal. Consequently, it is rare to find articulated skeletons that can be classified to lower taxonomic levels. In some Cambrian limestones, however, skeletal plates of echinoderms are a dominant sedimentary constituent, indicating the existence of innumerable animals and suggesting far greater diversity, especially at low taxonomic levels, than has been recorded. As in some modern echinoderm species, it is common for those in the Cambrian to show evidence of a gregarious habit and patchy distribution. Most of the Cambrian echinoderms were suspension and detritus feeders, and it was only after the Cambrian that herbivores and carnivores became common. All classes of echinoderms that were present during the Cambrian, except for the Crinoidea, subsequently became extinct.

The phylum Mollusca also underwent significant adaptive radiation during the Cambrian, with the appearance of the classes Monoplacophora, Gastropoda, Pelecypoda (synonymous with Bivalvia), Cephalopoda, Polyplacophora, Rostroconchia, Hyolitha, and Stenothecoida. (The latter three are now extinct.) The only molluscan class that appeared after the Cambrian is the Scaphopoda (tusk or tooth shells), which originated during the Ordovician. A small variety of mollusks is present in the shelly fauna of the earliest Cambrian. Mollusk shells usually are absent or rare in later Cambrian rocks, but at a few localities they are common to abundant. The small conical shells of hyoliths are the kind most commonly preserved in Cambrian rocks.

Other new Cambrian phyla largely lack biomineralization and have a poor fossil record. The Hemichordata is represented by rare sessile graptolites (order Dendroidea) of the class Graptolithina, which appeared during the middle of the Cambrian. Appearances of the more common planktonic graptolites (order Graptoloidea) have been used as informal indicators of the Cambrian-Ordovician boundary; the formal boundary stratotype coincides with the first appearance of Iapetognathus fluctivagus, a conodont (primitive chordate with tooth-shaped fossil remains). Cambrian worm phyla (Annelida, Priapulida, and probable Pogonophora) are mainly known from localities where preservation was extraordinary. Other rarely represented phyla include the Onychophora, with leglike lobopodia (a catchall category of Cambrian life), and the Ctenophora (comb jellies).

The origin of the phylum Chordata is unclear. If primitive conodont-like fossils (paraconodonts) are included, as argued by some paleontologists, the phylum appeared during the late Precambrian. Rare soft-bodied possible chordates have been described from Lower Cambrian rocks. The oldest unequivocal chordate remains come from the Lower Cambrian of south China, where small jawless fish similar to present-day lamprey and hagfish occur as part of the Chengjiang Biota. The fossils from this Lagerstätte (a fossil-rich deposit of sedimentary rock) preserve the remains of different soft body tissues—traces of gill pouches, dorsal fins, and likely the notochord itself.

Trace fossils, as discussed above, provide independent evidence of accelerated animal diversification and a distinct increase in the complexity of animal behaviour near the beginning of the Cambrian Period. Other evidence from trace fossils indicates changes in Cambrian bioturbation, the churning and stirring of seafloor sediment by animal forms. Late Precambrian (Ediacaran) trace fossils from around the world are essentially surface trails that show little evidence of sediment burrowing. Quantitative study in the western United States has shown that a significant increase in bioturbation occurs between pretrilobite (Tommotian) and trilobite-bearing (Atdabanian) Lower Cambrian rocks. Throughout the Cambrian, bioturbation was more intensive in nearshore and inner-shelf environments than in more offshore settings. The depth of bioturbation in carbonate environments of the inner shelf was consistently less than a few centimetres throughout Cambrian time.

Deposits with soft-bodied organisms

Modern biota are largely dominated by soft-bodied organisms, whereas the fossil record is overwhelmingly dominated by the hard parts of organisms. Rare deposits of fossils with soft parts are therefore of great importance in helping to establish the original diversity and ecology of ancient communities. Among the most famous soft-bodied biota are those found in the Burgess Shale of western Canada (British Columbia), which was formed during the middle of the period, and the Chengjian Biota from southern China (Yunnan), which was formed earlier in the period. In the case of the Burgess Shale, tens of thousands of complete specimens, many with soft parts preserved in remarkable detail, were apparently buried by submarine slumping of sediment on the continental shelf of Laurentia. Fossils from the Burgess Shale have been used to demonstrate the presence of a complex community as diverse in habit, structure, and adaptation as many modern communities. If isolated, fossils with hard parts would constitute a typical Cambrian fauna, but they represent only about 40 percent of the genera in the Burgess Shale, a proportion similar to that in modern faunas on continental shelves. Approximately 15 percent of the genera known from the Burgess Shale also occur in the older Chengjian deposit. Mollusks and echinoderms appear to be the only major groups absent in the Chengjian Biota that occur in the Burgess Shale.

The most celebrated invertebrate from the Burgess Shale is attributed to the genus Anomalocaris. This creature was the largest predator that swam in Cambrian seas. It was outfitted with a pair of giant flexible appendages that could grasp and move prey toward a peculiar mouth structure consisting of armoured plates arranged in a circular pattern. The articulated mouth of Anomalocaris has been described as resembling a pineapple ring with the center cut out. Trilobites with telltale scars on their carapace are believed to represent the cookie-cutter bite of Anomalocaris.

A smaller relative of Anomalocaris is the bizarre Opabinia, with its five eyes mounted on an arthropod-like body and a long nozzlelike structure fitted with a single pair of claws that protrudes forward from the head. It is thought that Opabinia moved across the seafloor, using its flexible nozzle to stir up bottom sediment and grasp hidden prey with extended claws.

Other less-diverse Cambrian deposits with soft-bodied organisms have been discovered in such places as South Australia, northern Greenland, Sweden, and the United States (Utah and Pennsylvania). Some of these are important in demonstrating that the biota of the Burgess Shale is unusual only in preservation and not in composition. They also demonstrate that some of the soft-bodied taxa have substantial geologic ranges and wide geographic distributions. Extraordinary preservation of arthropods dating to the later parts of the Cambrian Period in Sweden is especially notable, as the bodies and appendages remain largely uncrushed; the integument retains many fine structures, including setae (bristly hairs or organs) and pores.

Extinction events

Minor extinction events occurred sporadically throughout the Cambrian Period. One near the middle of the Cambrian was apparently related to global marine regression. At least three later Cambrian events primarily affected low-latitude shelf communities and have been used in North America to define biostratigraphic units called biomeres. (Such units are bounded by sudden nonevolutionary changes in the dominant elements of a phylum.) Each of the Cambrian biomere events eliminated several trilobite families, which collectively contained most of the genera and species that were living on the continental shelves. Less attention has been paid to extinction patterns among other invertebrates, but some evidence of corresponding extinctions among brachiopods and conodonts is available. Geochemical evidence suggests that the biomere extinctions were probably caused by abrupt drops in water temperature. Oxygen isotopes from the skeletons of bottom-dwelling trilobites associated with one biomere boundary in Texas indicate a drop in water temperature of about 5 °C (9 °F) at the boundary. A comparable decrease in temperature would kill the larvae of many modern marine invertebrates that live in warm oceans. Following each Cambrian extinction, shelf environments were repopulated by low-diversity trilobite faunas of relatively simple form, which apparently emigrated from deeper and cooler off-shelf environments. In effect, every one of the biomere events was followed by an adaptive radiation of new taxa, especially among the trilobites.