- The process of evolution
Diversity and extinction
- Related Topics:
- human evolution
- Ordovician radiation
- adaptation
- extinction
- coevolution
- On the Web:
- National Center for Biotechnology Information - PubMed Central - Science and evolution (Dec. 16, 2024)
News •
The current diversity of life is the balance between the species that have arisen through time and those that have become extinct. Paleontologists observe that organisms have continuously changed since the Cambrian Period, more than 500 million years ago, from which abundant animal fossil remains are known. The division of geologic history into a succession of eras and periods (see ) is hallmarked by major changes in plant and animal life—the appearance of new sorts of organisms and the extinction of others. Paleontologists distinguish between background extinction, the steady rate at which species disappear through geologic time, and mass extinctions, the episodic events in which large numbers of species become extinct over time spans short enough to appear almost instantaneous on the geologic scale.
Best known among mass extinctions is the one that occurred at the end of the Cretaceous Period, when the dinosaurs and many other marine and land animals disappeared. Most scientists believe that the Cretaceous mass extinction was provoked by the impact of an asteroid or comet on the tip of the Yucatán Peninsula in southeastern Mexico 65 million years ago. The object’s impact caused an enormous dust cloud, which greatly reduced the Sun’s radiation reaching Earth, with a consequent drastic drop in temperature and other adverse conditions. Among animals, about 76 percent of species, 47 percent of genera, and 16 percent of families became extinct. Although the dinosaurs vanished, turtles, snakes, lizards, crocodiles, and other reptiles, as well as some mammals and birds, survived. Mammals that lived prior to the event were small and mostly nocturnal, but during the ensuing Paleogene and Neogene periods they experienced an explosive diversification in size and morphology, occupying ecological niches vacated by the dinosaurs. Most of the orders and families of mammals now in existence originated in the first 10 million–20 million years after the dinosaurs’ extinction. Birds also greatly diversified at that time.
Several other mass extinctions have occurred since the Cambrian. The most catastrophic happened at the end of the Permian Period, about 251 million years ago, when 95 percent of marine species, 82 percent of genera, and 51 percent of families of animals became extinct. (See also Triassic Period: Permian-Triassic extinctions.) Other large mass extinctions occurred at or near the end of the Ordovician (about 444 million years ago, 85 percent of marine species extinct), Devonian (about 359 million years ago, 70–80 percent of species extinct), and Triassic (about 200 million years ago, nearly 80 percent of species extinct). Changes of climate and chemical composition of the atmosphere appear to have caused these mass extinctions; there is no convincing evidence that they resulted from cosmic impacts. Like other mass extinctions, they were followed by the origin or rapid diversification of various kinds of organisms. The first mammals and dinosaurs appeared after the late Permian extinction, and the first vascular plants after the Late Ordovician extinction.
Background extinctions result from ordinary biological processes, such as competition between species, predation, and parasitism. When two species compete for very similar resources—say, the same kinds of seeds or fruits—one may become extinct, although often they will displace one another by dividing the territory or by specializing in slightly different foods, such as seeds of a different size or kind. Ordinary physical and climatic changes also account for background extinctions—for example, when a lake dries out or a mountain range rises or erodes.
New species come about by the processes discussed in previous sections. These processes are largely gradual, yet the history of life shows major transitions in which one kind of organism becomes a very different kind. The earliest organisms were prokaryotes, or bacteria-like cells, whose hereditary material is not segregated into a nucleus. Eukaryotes have their DNA organized into chromosomes that are membrane-bound in the nucleus, have other organelles inside their cells, and reproduce sexually. Eventually, eukaryotic multicellular organisms appeared, in which there is a division of function among cells—some specializing in reproduction, others becoming leaves, trunks, and roots in plants or different organs and tissues such as muscle, nerve, and bone in animals. Social organization of individuals in a population is another way of achieving functional division, which may be quite fixed, as in ants and bees, or more flexible, as in cattle herds or primate groups.
Because of the gradualness of evolution, immediate descendants differ little, and then mostly quantitatively, from their ancestors. But gradual evolution may amount to large differences over time. The forelimbs of mammals are normally adapted for walking, but they are adapted for shoveling earth in moles and other mammals that live mostly underground, for climbing and grasping in arboreal monkeys and apes, for swimming in dolphins and whales, and for flying in bats. The forelimbs of reptiles became wings in their bird descendants. Feathers appear to have served first for regulating temperature but eventually were co-opted for flying and became incorporated into wings.
Eyes, which serve as another example, also evolved gradually and achieved very different configurations, all serving the function of seeing. Eyes have evolved independently at least 40 times. Because sunlight is a pervasive feature of Earth’s environment, it is not surprising that organs have evolved that take advantage of it. The simplest “organ” of vision occurs in some single-celled organisms that have enzymes or spots sensitive to light (see eyespot), which helps them move toward the surface of their pond, where they feed on the algae growing there by photosynthesis. Some multicellular animals exhibit light-sensitive spots on their epidermis. Further steps—deposition of pigment around the spot, configuration of cells into a cuplike shape, thickening of the epidermis leading to the development of a lens, development of muscles to move the eyes and nerves to transmit optical signals to the brain—all led to the highly developed eyes of vertebrates (see eye, human) and cephalopods (octopuses and squids) and to the compound eyes of insects.
While the evolution of forelimbs—for walking—into the wings of birds or the arms and hands of primates may seem more like changes of function, the evolution of eyes exemplifies gradual advancement of the same function—seeing. In all cases, however, the process is impelled by natural selection’s favouring individuals exhibiting functional advantages over others of the same species. Examples of functional shifts are many and diverse. Some transitions at first may seem unlikely because of the difficulty in identifying which possible functions may have been served during the intermediate stages. These cases are eventually resolved with further research and the discovery of intermediate fossil forms. An example of a seemingly unlikely transition is described above in the section The fossil record—namely, the transformation of bones found in the reptilian jaw into the hammer and anvil of the mammalian ear.
Evolution and development
Starfish are radially symmetrical, but most animals are bilaterally symmetrical—the parts of the left and right halves of their bodies tend to correspond in size, shape, and position (see symmetry). Some bilateral animals, such as millipedes and shrimps, are segmented (metameric); others, such as frogs and humans, have a front-to-back (head-to-foot) body plan, with head, thorax, abdomen, and limbs, but they lack the repetitive, nearly identical segments of metameric animals. There are other basic body plans, such as those of sponges, clams, and jellyfish, but their total number is not large—less than 40.
The fertilized egg, or zygote, is a single cell, more or less spherical, that does not exhibit polarity such as anterior and posterior ends or dorsal and ventral sides. Embryonic development (see animal development) is the process of growth and differentiation by which the single-celled egg becomes a multicellular organism.
The determination of body plan from this single cell and the construction of specialized organs, such as the eye, are under the control of regulatory genes. Most notable among these are the Hox genes, which produce proteins (transcription factors) that bind with other genes and thus determine their expression—that is, when they will act. The Hox genes embody spatial and temporal information. By means of their encoded proteins, they activate or repress the expression of other genes according to the position of each cell in the developing body, determining where limbs and other body parts will grow in the embryo. Since their discovery in the early 1980s, the Hox genes have been found to play crucial roles from the first steps of development, such as establishing anterior and posterior ends in the zygote, to much later steps, such as the differentiation of nerve cells.
The critical region of the Hox proteins is encoded by a sequence of about 180 consecutive nucleotides (called the homeobox). The corresponding protein region (the homeodomain), about 60 amino acids long, binds to a short stretch of DNA in the regulatory region of the target genes. Genes containing homeobox sequences are found not only in animals but also in other eukaryotes such as fungi and plants.
All animals have Hox genes, which may be as few as 1, as in sponges, or as many as 38, as in humans and other mammals. Hox genes are clustered in the genome. Invertebrates have only one cluster with a variable number of genes, typically fewer than 13. The common ancestor of the chordates (which include the vertebrates) probably had only one cluster of Hox genes, which may have numbered 13. Chordates may have one or more clusters, but not all 13 genes remain in every cluster. The marine animal amphioxus, a primitive chordate, has a single array of 10 Hox genes. Humans, mice, and other mammals have 38 Hox genes arranged in four clusters, three with 9 genes each and one with 11 genes. The set of genes varies from cluster to cluster, so that out of the 13 in the original cluster, genes designated 1, 2, 3, and 7 may be missing in one set, whereas 10, 11, 12, and 13 may be missing in a different set.
The four clusters of Hox genes found in mammals originated by duplication of the whole original cluster and retain considerable similarity between clusters. The 13 genes in the original cluster also themselves originated by repeated duplication, starting from a single Hox gene as found in the sponges. These first duplications happened very early in animal evolution, in the Precambrian. The genes within a cluster retain detectable similarity, but they differ more from one another than they differ from the corresponding, or homologous, gene in any of the other sets. There is a puzzling correspondence between the position of the Hox genes in a cluster along the chromosome and the patterning of the body—genes located upstream (anteriorly in the direction in which genes are transcribed) in the cluster are expressed earlier and more anteriorly in the body, while those located downstream (posteriorly in the direction of transcription) are expressed later in development and predominantly affect the posterior body parts.
Researchers demonstrated the evolutionary conservation of the Hox genes by means of clever manipulations of genes in laboratory experiments. For example, the ey gene that determines the formation of the compound eye in Drosophila vinegar flies was activated in the developing embryo in various parts of the body, yielding experimental flies with anatomically normal eyes on the legs, wings, and other structures. The evolutionary conservation of the Hox genes may be the explanation for the puzzling observation that most of the diversity of body plans within major groups of animals arose early in the evolution of the group. The multicellular animals (metazoans) first found as fossils in the Cambrian already demonstrate all the major body plans found during the ensuing 540 million years, as well as four to seven additional body plans that became extinct and seem bizarre to observers today. Similarly, most of the classes found within a phylum appear early in the evolution of the phylum. For example, all living classes of arthropods are already found in the Cambrian, with body plans essentially unchanged thereafter; in addition, the Cambrian contains a few strange kinds of arthropods that later became extinct.