Time as systematized in modern scientific society

intime
print Print
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies. Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Share
Share to social media
URL
https://www.britannica.com/science/time
Feedback
Corrections? Updates? Omissions? Let us know if you have suggestions to improve this article (requires login).
Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

News

Ravens vs. Texans on Netflix: Time, TV channel, for Christmas game Dec. 25, 2024, 2:18 AM ET (USA Today)

Time measurement: general concepts

Accuracy in specifying time is needed for civil, industrial, and scientific purposes. Although defining time presents difficulties, measuring it does not; it is the most accurately measured physical quantity. A time measurement assigns a unique number to either an epoch, which specifies the moment when an instantaneous event occurs, in the sense of time of day, or a time interval, which is the duration of a continued event. The progress of any phenomenon that undergoes regular changes may be used to measure time. Such phenomena make up much of the subject matter of astronomy, physics, chemistry, geology, and biology. The following sections of this article treat time measurements based on manifestations of gravitation, electromagnetism, rotational inertia, and radioactivity.

Series of events can be referred to a time scale, which is an ordered set of times derived from observations of some phenomenon. Two independent, fundamental time scales are those called dynamical—based on the regularity of the motions of celestial bodies fixed in their orbits by gravitation—and atomic—based on the characteristic frequency of electromagnetic radiation used to induce quantum transitions between internal energy states of atoms.

Two time scales that have no relative secular acceleration are called equivalent. That is, a clock displaying the time according to one of these scales would not—over an extended interval—show a change in its rate relative to that of a clock displaying time according to the other scale. It is not certain whether the dynamical and atomic scales are equivalent, but present definitions treat them as being so.

The Earth’s daily rotation about its own axis provides a time scale, but one that is not equivalent to the fundamental scales because tidal friction, among other factors, inexorably decreases the Earth’s rotational speed (symbolized by the Greek letter omega, ω). Universal time (UT), once corrected for polar variation (UT1) and also seasonal variation (UT2), is needed for civil purposes, celestial navigation, and tracking of space vehicles.

The decay of radioactive elements is a random, rather than a repetitive, process, but the statistical reliability of the time required for the disappearance of any given fraction of a particular element can be used for measuring long time intervals.

Principal scales

Numerous time scales have been formed; several important ones are described in detail in subsequent sections of this article. The abbreviations given here are derived from English or French terms. Universal Time (UT; mean solar time or the prime meridian of Greenwich, England), Coordinated Universal Time (UTC; the basis of legal, civil time), and leap seconds are treated under the heading Rotational time. Ephemeris Time (ET; the first correct dynamical time scale) is treated in the section Dynamical time, as are Barycentric Dynamical Time (TDB) and Terrestrial Dynamical Time (TDT), which are more accurate than Ephemeris Time because they take relativity into account. International Atomic Time (TAI; introduced in 1955) is covered in the section Atomic time.

Relativistic effects

Accuracies of atomic clocks and modern observational techniques are so high that the small differences between classical mechanics (as developed by Newton in the 17th century) and relativistic mechanics (according to the special and general theories of relativity proposed by Einstein in the early 20th century) must be taken into account. The equations of motion that define TDB include relativistic terms. The atomic clocks that form TAI, however, are corrected only for height above sea level, not for periodic relativistic variations, because all fixed terrestrial clocks are affected identically. TAI and TDT differ from TDB by calculable periodic variations.

Apparent positions of celestial objects, as tabulated in ephemerides, are corrected for the Sun’s gravitational deflection of light rays.

Clocks

The atomic clock provides the most precise time scale. It has made possible new, highly accurate techniques for measuring time and distance. These techniques, involving radar, lasers, spacecraft, radio telescopes, and pulsars, have been applied to the study of problems in celestial mechanics, astrophysics, relativity, and cosmogony.

Atomic clocks serve as the basis of scientific and legal clock times. A single clock, atomic or quartz-crystal, synchronized with either TAI or UTC provides the SI second (that is, the second as defined in the International System of Units), TAI, UTC, and TDT immediately with high accuracy.

Time units and calendar divisions

The familiar subdivision of the day into 24 hours, the hour into 60 minutes, and the minute into 60 seconds dates to the ancient Egyptians. When the increasing accuracy of clocks led to the adoption of the mean solar day, which contained 86,400 seconds, this mean solar second became the basic unit of time. The adoption of the SI second, defined on the basis of atomic phenomena, as the fundamental time unit has necessitated some changes in the definitions of other terms.

In this article, unless otherwise indicated, second (symbolized s) means the SI second; a minute (m or min) is 60 s; an hour (h) is 60 m or 3,600 s. An astronomical day (d) equals 86,400 s. An ordinary calendar day equals 86,400 s, and a leap-second calendar day equals 86,401 s. A common year contains 365 calendar days and a leap year, 366.

The system of consecutively numbering the years of the Christian Era was devised by Dionysius Exiguus in about 525; it included the reckoning of dates as either ad or bc (the year before ad 1 was 1 bc). The Julian calendar, introduced by Julius Caesar in the 1st century bc, was then in use, and any year whose number was exactly divisible by four was designated a leap year. In the Gregorian calendar, introduced in 1582 and now in general use, the centurial years are common years unless their numbers are exactly divisible by 400; thus, 1600 was a leap year, but 1700 was not.